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Long periodic waves on an even beach

A. Shermenev and M. Shermeneva
General Physics Institute, Russian Academy of Science, Moscow 117942, Russia

~Received 27 August 1999!

High-order Boussinesq-type equations for long waves over an even slope are derived and investigated.
Potential and surface elevation for periodic wave motion are expanded in Fourier series up to the third
harmonic inclusively. Coefficients of this series are expressed as polynomials of Bessel functions.

PACS number~s!: 47.15.Hg
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I. INTRODUCTION

A special feature of Boussinesq-type equations is a po
bility to reduce the dimension of a problem by expanding
velocity potential as a power series in the vertical coordina
This expansion had been used by Lagrange@1#, developed by
Boussinesq@2#, and received its modern form in the paper
Friedrichs@3#.

In 1966, Mei and Me´hauté@4# extended these equations
an uneven bottom in one dimension using the bottom po
tial as a basic variable. Later, similar equations based on
depth-averaged velocity and on the velocity at the still wa
level were derived~see survey in the paper of Madsen a
Schäffer @5#!. In the present paper, we follow Mei and Me´-
hautéand write down Boussinesq-type equations for the b
tom potential.

There are two small parameters associated w
Boussinesq-type equations: the ratio of amplitude to dep«
and the ratio of depth to wavelengthm. The classical Bouss
inesq equations include terms of orderO(«), O(m2) and
assume thatO(«)5O(m2). We work in the next order using
the same assumption, so our equations include«2, «m2, and
m4 terms.

We consider a regular periodic wave motion over an e
slopesxexcluding the deep-water region where the shallo
water restrictions are violated and the neighborhood
shoreline where singularity is possible. The potential at
bottom is expanded in Fourier series(m51

3 Sm(x)sin(mvt) up
to orders («2, «m2,m4) where functionsSm(x) are homog-
enous polynomials of Bessel functionsZ0(2vAx/s) and
Z1(2vAx/s) whose coefficients are Loran polynomials
Ax. ~The first term of this expansionJ0(2vAx/s)sin(vt) is
used, for example, in the work of Mei@6#!. Expansion for the
surface elevation is also given.

We conjecture that Boussinesq-type equations can
written and solutions of the specified form can be calcula
for an arbitrary set of orders of kept terms.

II. BASIC EQUATIONS

Nondimensional coordinates are used as follows:
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where the prime denotes physical variables anda08 , l 08 , and
h08 denote characteristic wave amplitude, depth, and wa
length, respectively. The scaled governing equation
boundary conditions for the irrotational wave problem rea

m2wxx1wzz50, 2h~x!,z,«h~x,t !, ~2!

h t1«wxhx2m22wz50, z5«h~x,t !, ~A!, ~3!

w t1
1

2
«~wx

21m22wz
2!1h50, z5«h~x,t !, ~B!,

~4!

wz52m2hxwx , z52h~x!, ~5!

where « and m are the measures of nonlinearity and fr
quency dispersion defined by

«5a08/h08 , m5h08/ l 08 . ~6!

We expand the potentialw(x,z,t) in powers of a vertical
coordinate

w~x,z,t !5 (
m50

`

@z1h~x!#mFm~x,t ! ~7!

and assume that the function defining the bottomz5
2h(x) is of linear form

h~x![sx. ~8!

@Owing to ~8!, the linear part of Eq.~15! is of Bessel type.#
Substituting~7! and ~8! into ~2! and equating to zero co

efficients of each power ofz1h(x), we have

Fm1252m2
2s~m11!Fm11,x1Fm,xx

~m12!~m11!~11s2m2!
. ~9!

The boundary condition at the bottom~5! gives

F152m2
2sF0,x

11s2m2
. ~10!

Denoting f (x,t)[F0(x,t), and expanding all expression
in powers ofm, we obtain the first terms ofw
6000 ©2000 The American Physical Society
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w5 f 1m2~z1h! f x~2s1s3m22s5m4!1m2~z1h!2f xx

3S 2
1

2
1

3

2
s2m22

5

2
s4m4D1m4~z1h!3f xxx

3S 1

2
s2

5

3
s3m2D1m4~z1h!4f xxxxS 1

24
2

5

12
s2m2D

1m6~z1h!5f xxxxxS 2
1

24
sD1m6~z1h!6f xxxxxx

3S 2
1

720D . ~11!

Expression~11! satisfies~2! and ~5!. Substitution of Eq.
~11! into ~3! and~4! gives the Boussinesq-type equations
potential at bottomf (x,t) and surface elevationh(x,t):

h t1s fx1sx fxx1F2s3f x23s3x fxx2
3

2
s3x2f xxx

2
1

6
s3x3f xxxxGm21H f x1F2s2f x22s2x fxx

2
1

2
s2x2f xxxGm2J hx«1H f xx1F23s2f xx23s2x fxxx

2
1

2
s2x2f xxxxGm2J h«1Fs5f x15s5x fxx15s5x2f xxx

1
5

3
s5x3f xxxx1

5

24
s4x4f xxxxx1

1

120
s5x5f xxxxxxGm450,

~12!
a
th
r

h1 f t1F2s2x fxt2
1

2
s2x2f xxtGm21F1

2
f x

2G«
1F2

1

2
s2f x

22sh f xt2s2x fxf xx1
1

2
s2x2f xx

2 2sxh f xxt

2
1

2
s2x2f xf xxxG«m21Fs4x fxt1

3

2
s4x2f xxt

1
1

2
s4x3f xxxt1

1

24
s4x4f xxxxtGm450. ~13!

To express the surface elevationh(x,t) in terms off and
its derivatives, we expand it in powers ofm: h5h0
1h2m21h4m41O(m6). ~Expansion ofh i in powers of« is
not important for this purpose.! After substitution of this ex-
pansion in~13!, the following formulas are derived:

h052 f t2
1

2
f x

2«,

h25s2x fxt1
1

2
s2x2f xxt1F1

2
s2f x

22s ft f xt1s2x fxf xx

2
1

2
s2x2f xx

2 2sx ft f xxt1
1

2
s2x2f xf xxxG«,

h452s4x fxt2
3

2
s4x2f xxt2

1

2
s4x3f xxxt2

1

24
s4x4f xxxxt.

~14!

Substituting~14! in ~12!, we have the single equation fo
the functionf:
2 f tt1s fx1sx fxx1F2s3f x1s2x fxtt23s3x fxx1
1

2
s2x2f xxtt2

3

2
s3x2f xxx2

1

6
s3x3f xxxxGm21@2 f xxf t22 f xf xt#«

1Fs5f x2s4x fxtt15s5x fxx2
3

2
s4x2f xxtt15s5x2f xxx2

1

2
s4x3f xxxtt1

5

3
s5x3f xxxx2

1

24
s4x4f xxxxtt

1
5

24
s5x4f xxxxx1

1

120
s5x5f xxxxxxGm41F2s ftt f xt13s2f t f xt2s ft f xtt13s2f t f xx14s2x fxxf xt2sx ftt f xxt13s2x fxf xxt

2
1

2
s2x2f xxf xxt2sx ft f xxtt13s2x ft f xxx1s2x2f xtf xxx1s2x2f xf xxxt1

1

2
s2x2f xxxxf tG«m21F3

2
f x

2f xxG«250. ~15!
-
III. PERIODIC PROBLEM

We suppose that the solution is periodic in time and c
be expanded in a Fourier series in an area excluding
deep-water region and the neighborhood of shoreline

f ~x,t !5@S00
1 ~x!1S20

1 ~x!«21S02
1 ~x!m21S04

1 ~x!m4#sin~vt !

1@S10
2 ~x!«1S12

2 ~x!«m2#sin~2vt !

1S20
3 ~x!«2 sin~3vt !. ~16!
n
e

@Forms of coefficients near sin(mvt) are determined by re
current calculations when solving~15!#.

Denote byZ5Z(x) a solution to the equation

v2Z1sZx1sxZxx50 ~17!

and byZ8 its derivative.Z(x) andZ8(x) can be expressed in
terms of Bessel functions in the following way:
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Z~x!5aJ0S 2vAx

sD 1bY0S 2vAx

sD , Z8~x!

5vs21/2x21/2F2aJ1S 2vAx

sD 2bY1S 2vAx

sD G .
~18!

The major finding of this paper is the following expressio
for Sab

i :

S00
1 5Z, ~19!

S20
1 52

v4

8s3x
Z32

v2

8s2x
Z2Z82

v2

8s2
ZZ82 2

1

8s
Z83,

~20!

S02
1 52

2sv2x

9
Z1S 7s2x

9
1

sv2x2

9 DZ8, ~21!

S04
1 5S 2

479s3v2x

1350
2

29s2v4x2

225
2

sv6x3

162 DZ

1S 2
479s4x

1350
2

136s3v2x2

675
2

7s2v4x3

450 DZ8, ~22!

S10
2 52
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2s
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2 5S 4v3
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1
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18s DZ21
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9
2
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18 DZ82, ~24!
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3 52
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8s3x
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v2

8s2x
Z2Z81
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8s2
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1

24s
Z83.

~25!

Substituting these expressions in~14!, we obtain the fol-
lowing expressions forh(x,t):

h~x,t !5C10
0 ~x!«1C12

0 ~x!«m21@C00
1 ~x!1C20

1 ~x!«2

1C02
1 ~x!m21C04

1 ~x!m4#cos~vt !1~C10
2 ~x!«

1C12
2 ~x!«m2!cos~2vt !1C20

3 ~x!«2 cos~3vt !,

~26!
where

C10
0 52

1

4
Z82, ~27!
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0 5
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4
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v4x

18
ZZ82

7sv2x

36
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v
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C02
1 52

5sv3x

18
Z1S 2

5s2vx

18
2

sv3x2

9 DZ8, ~31!

C04
1 5S 283s3v3x

2700
2

43s2v5x2

1800
1

sv7x3

162 DZ

1S 283s4vx

2700
2

103s3v3x2

1350
2

s2v5x3

25 DZ8, ~32!

C10
2 5

v2

s
ZZ81

1

4
Z82, ~33!

C12
2 5S 2

23v4

12
2

7v6x

9s DZ22
49v4x

18
ZZ8

1S 41sv2x

36
1

7v4x2

9 DZ82, ~34!

C20
3 5

3v5

8s3x
Z31

5v3

8s2x
Z2Z81S v

4sx
2

9v3

8s2 D ZZ822
3v

8s
Z83.

~35!

IV. CONCLUSIONS

A solution with the precision of («2, «m2, m4) to Eqs.
~2!–~5! is presented. The intermediate equations are gi
for illustrating the method of derivation but the expressio
~19!–~33! can be checked by substitution into the syste
~2!–~5! @using expression~11! for the potential#.

We conjecture that these expressions are only the
terms of some expanded exact solution to system~2!–~5!.
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